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Abstract

Hexamethylene diisocyanate (HDI) is an important industrial chemical that can cause asthma, 

however pathogenic mechanisms remain unclear. Upon entry into the respiratory tract, HDI’s 

N=C=O groups may undergo nucleophilic addition (conjugate) to host molecules (e.g. proteins), 

or instead react with water (hydrolyze), releasing CO2 and leaving a primary amine in place of the 

original N=C=O. We hypothesized that (primary amine groups present on) hydrolyzed or partially 

hydrolyzed HDI may compete with proteins and water as a reaction target for HDI in solution, 

resulting in polymers that could be identified and characterized using LC-MS and LC-MS/MS. 

Analysis of the reaction products formed when HDI was mixed with a pH buffered, isotonic, 

protein containing solution identified multiple [M+H]+ ions with m/z’s and collision-induced 

dissociation (CID) fragmentation patterns consistent with those expected for dimers 

(259.25/285.23 m/z), and trimers (401.36/427.35 m/z) of partially hydrolyzed HDI (e.g. ureas/

oligoureas). Human peripheral blood mononuclear cells (PBMCs) and monocyte-like U937, but 

not airway epithelial NCI-H292 cell lines cultured with these HDI ureas contained a novel 260.23 

m/z [M+H]+ ion. LC-MS/MS analysis of the 260.23 m/z [M+H]+ ion suggest the formula 

C13H29N3O2 and a structure containing partially hydrolyzed HDI, however definitive 

characterization will require further orthogonal analyses.
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1. INTRODUCTION

Hexamethylene (and related) diisocyanate compounds are widely used and are among the 

best-recognized chemical causes of occupational asthma [1]. Reactivity of diisocyanate upon 

entry into the human body is unclear, but likely central to pathogenic mechanisms leading to 
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asthma [2]. Inhaled diisocyanate may react with host molecules (e.g. proteins or peptides) 

[3–8], or water [9–11]. Research to date has focused largely on diisocyanate reactivity with 

host molecules, as this process can cause structural (neo-epitopes) or functional changes that 

stimulate the host immune system [12–14]. Relatively less is known about the reactivity of 

diisocyanates with water in vivo, although its occurrence is supported by limited data [11, 

15–17].

Much of our understanding of diisocyanates’ reactivity with water has been inferred from 

studies with corresponding monoisocyanates, or in relation to its industrial use [9, 18, 19]. 

Isocyanate reactivity with water yields unstable carbamic acids that rapidly decompose, 

releasing carbon dioxide and leaving behind a primary amine group in place of the original 

N=C=O [9]. Under laboratory conditions, isocyanate reactivity with water can be catalyzed 

via acid, base, and organometallic compounds [9, 15, 18–20]. Proteins, salts, and other 

organic compounds have been suggested to similarly influence isocyanate reactivity with 

water in vivo [10].

Under physiologic conditions, hydrolyzed or partially hydrolyzed diisocyanate may itself 

serve as a reaction target for unreacted N=C=O groups, resulting in polymers of the urea or 

oligourea type. We used LC-MS and LC-MS/MS to evaluate this hypothesis through in vitro 

experiments with HDI in a model physiologic solution, a pH-buffered, isotonic suspension 

containing albumin protein. Under these conditions, LC-MS and LC-MS/MS describe the 

formation of new [M+H]+ ions with m/z’s and fragmentation patterns upon CID consistent 

with those expected for dimers and trimers of partially hydrolyzed HDI (e.g. urea/oligourea). 

LC-MS and LC-MS/MS were used to further assess the HDI urea’s biological activity in 

vitro and lead to discovery of a novel 260.23 m/z [M+H]+ ion in exposed human cells.

2. MATERIALS AND METHODS

2.1 Reactivity of HDI in a physiologic solution

HDI was reacted in a model physiologic solution containing normal saline, pH buffering 

ions (phosphate), and protein at a concentration roughly equivalent to that of airway fluid 

[21]. HDI or 1,6 diisocyanatohexane (CAS Number: 822-06-0) was obtained from Sigma-

Aldrich (St Louis, MO) and was of ≥99% purity by gas chromatography, with a refractive 

index (n20/D) = 1.453, and a density of 1.047 g/mL at 20°C. Briefly, 100 μL of HDI was 

introduced dropwise with stirring, into 25 mL of a 0.5% (w/v) solution of sterile filtered (0.2 

μm, Merck Millipore Ltd; Bellencia, MA) endotoxin-free albumin (Sigma) in tissue-culture 

grade phosphate buffered saline (PBS) pH 7.2 (Gibco; Grand Island, NY), and mixed end-

over-end for 2 hrs at 37°C. The reaction conditions, containing 20 mM HDI and 73 μM 

albumin, have previously been shown to yield products that induce human innate immune 

responses in vitro [13]. At this molar ratio of HDI:albumin (~325:1), we estimate ~18-fold 

molar excess of N=C=O to protein reaction sites, assuming each albumin molecule contains 

at most 37 -NH2 groups capable of reacting with (toluene) diisocyanate [22], and each HDI 

molecule contains 2 N=C=O groups. The reaction products were centrifuged at 1000 × g to 

pellet precipitated material, sterile (0.2 μm) and further filtered through a 3kDa molecular 

weight cut-off spin column (Amicon Ultra 0.5mL Centrifugal Filters Ultracel 3K) from 
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Merck Millipore Ltd. Control reactions without HDI were performed and identically 

processed in parallel.

2.2 Liquid chromatography coupled mass spectrometry (Agilent)

LC-MS and LC-MS/MS were performed on an Agilent G6550A Q-TOF system coupled to 

an Agilent 1290 Infinity LC system, using a rapid resolution HT Zorbax Eclipse Plus C18 

column (2.1 × 50 mm, 1.8 μm) from Agilent Technologies (Santa Clara, CA). Samples 

filtered through a <3 kDa spin column were mixed 1:10 (for HDI reaction products in 

physiologic solution and U937, NCI-H292 cell lysates) or 1:1 (for PBMC cell extracts, see 

below) in buffer A (water containing 0.1% formic acid) before 5 μL was loaded and eluted 

over a 6 minute period starting at time 0 with 5% buffer B (acetonitrile containing 0.1% 

formic acid), increasing to 20% buffer B between 0–3 min, 60% buffer B between 3–4 min, 

98% buffer B between 4–5 minutes and back to 5% buffer B from 5–6 min. LC-MS studies 

with PBMCs used a slightly steeper elution rate, going from 5 – 60% buffer B between 0 to 

5 minutes, up to 90% buffer B at 7 min, 95% buffer B at 9 minutes and 98% buffer B at 10 

minutes. Positive electrospray ionization (ESI) was performed using the following 

parameters: gas temp- 280°C, gas flow- 11 l/min, nebulizer-40 psig, sheath gas temp- 350°C, 

sheath gas flow-11, Vcap-4000 V, nozzle voltage-2000 V, fragmentor voltage– 175 V, 

skimmer voltage 65 V, octopole RF peak voltage 750 V. The m/z values of all ions present in 

the mass spectra were corrected against two reference ions (purine, [M+H]+ m/z 112.9856 

and 1H, 1H, 3H tetra(fluoropropoxy)phosphazine, [M+H]+ m/z 922.0097). The data 

acquisition range, for LC-MS was from 110–1700 m/z. For MS/MS analyses, the collision 

energy was automatically set using Agilent MassHunter Acquisition software according to 

the formula, slope × (m/z)/100 + offset; with the slope of 5 and offset of 2.5. MS/MS data 

were obtained for the 5 most intense ions, in some experiments with preference given to 

species of interest with masses of 285.23, 401.36, 259.25, 427.34, 402.34, 260.23 or 143.12 

+/− 100 ppm. Data were acquired and analyzed using Mass Hunter Workstation software 

from Agilent.

2.4 In vitro cultures and processing

Peripheral blood was obtained from N=3 subject by venipuncture and mononuclear cells 

were purified by density gradient centrifugation as previously described [23]. Human 

monocytic (U937) and airway epithelial cell lines NCI-H292 were obtained from the 

American Type Culture Collection (Rockville, MD). Human PBMC cultures were initiated 

with 2 × 106 cells/mL in RPMI 1640 media (Gibco; Grand Island, NY) supplemented with 

10% autologous serum. U937 cultures were initiated with 5 × 105 cells/mL, and NCI-H292 

cell cultures were initiated at 30% confluence in RPMI 1640 media supplemented with 10% 

fetal bovine serum (Gibco). Following 48 hours of incubation with a 1:10 dilution of either 

HDI ureas (<3 kDa fraction of HDI reaction products in physiologic solution) or control 

reaction products (identically generated and processed without HDI), cells were washed 3 

times with tissue culture grade PBS, and pelleted in a microfuge tube at 10,000 × g. Pellets 

of 5 × 106 PBMCs or 5 × 107 U937 or NCI-H292 cells were lysed by sonication in 500 uL 

of HPLC-MS grade water (Fisher Scientific; Fairlawn, NJ) and the soluble intracellular 

contents were filtered through a 3kDa molecular weight cut-off spin column (Amicon Ultra 

0.5mL Centrifugal Filters Ultracel 3K) from Merck Millipore Ltd. The study was approved 

Wisnewski et al. Page 3

Anal Biochem. Author manuscript; available in PMC 2019 February 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



by the Human Investigations Committee of Yale University and written informed consent 

was obtained from all participants.

3. RESULTS

3.1 LC-MS and LC-MS/MS characterization of HDI polymerization in physiologic solution

3.1.1—Initially LC-MS analysis was performed on HDI following reactivity in a 

physiologic pH buffered, isotonic solution of albumin, under conditions previously shown to 

generate products that induce innate immune responses [13] and compared to a control 

sample reaction without HDI. Overlapping base peak chromatograms (BPCs) of the low 

molecular weight (<3 KDa) reaction products shown in Figure 1 highlight prominent new 

[M+H]+ ions observed when HDI is introduced into a physiologic solution. Table 1 lists the 

retention time, m/z values, and charge state (z) of the most intense [M+H]+ ions observed at 

different elution times.

3.1.2—Further MS/MS characterization of the new ions formed upon incubation of HDI in 

physiologic solution (Fig. 2) revealed CID fragmentation patterns expected for partially 

hydrolyzed HDI, and urea-like polymers (dimers and trimers) of partially hydrolyzed HDI as 

modeled in Figure 3. MS/MS of peak 1 revealed limited fragmentation of the predicted 

cyclized HDI reaction product (with itself), aside from loss of ammonium (−17 Da) yielding 

the 126.09 m/z [M+H]+ fragment ion. MS/MS analysis of peaks 2A and 2B (dimeric HDI 

ureas) highlight the prominence of CID [M+H]+ ions consistent with those expected for 

partially hydrolyzed HDI (143.12 m/z), completely hydrolyzed HDI (117.14 m/z), and 

further loss of ammonium from hydrolyzed HDI (100.11 m/z). Analysis of peaks 3A and 3B 

(trimeric HDI oligoureas) reveal these same CID [M+H]+ ions as well as those expected for 

dimeric HDI ureas (259.25 and 285.23 m/z).

3.1.3—The proposed diamines (peaks 2A and 3A) are observed predominately as doubly 

charged (z = 2) ions, consistent with their containing two functional groups protonated under 

acidic conditions. Cyclized structures proposed for the 142.12, 285.23, and 427.34 m/z [M

+H]+ ions are supported by their limited fragmentation upon CID (note scale of Y-axes), as 

they should retain their m/z despite cleavage of any single bond. Additional base peaks with 

a “P” superscript (1P and 2BP) contain 241.10 and 383.21 m/z [M+H]+ ions, which are 

likely phosphate adducts (+98 Da) of partially hydrolyzed HDI (peak 1) or dimers of 

partially hydrolyzed HDI (peak 2B), formed from buffer (sodium phosphate) under acidic 

LC-MS/MS conditions as previously described [24]. As expected, these phosphate adducts 

elute earlier than the corresponding [M+H]+ ions and are completely abolished upon CID 

(see Supplemental Materials Figs. S1 and S2). Thus, when HDI enters a physiologic protein 

containing solution it can partially hydrolyze and polymerize into multimers of partially 

hydrolyzed HDI (e.g. ureas and oligoureas).

3.2 LC-MS and LC-MS/MS identifies a unique 260.23 m/z [M+H]+ ion in human cells 
cultured with HDI ureas

3.2.1—We next used LC-MS to evaluated the potential biological effect of the HDI ureas 

that form when HDI is introduced into a pH buffered, isotonic protein containing (e.g. 
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physiological) solution. Preliminary studies were performed with PBMCs from N=3 human 

subjects, and focused on potential changes in intracellular metabolites. Subtraction analyses 

of LC-MS BPCs of cellular extracts obtained after 48 hours of exposure lead to discovery of 

an HDI urea-induced increase in an [M+H]+ ion with a 260.2 m/z and a retention time ~2.4 

min, as highlighted in Figure 4. Increases in a 259 m/z [M+H]+ ion with the same retention 

time (~1.3 min) as that of dimeric HDI urea (peak 2A in Figs. 1 and 2) were also noted, 

although its corresponding doubly charged (z=2) ion was not present, possibly due to 

differences in sample preparation and pH (PBMC lysates were mixed 1:1 with water/0.1% 

formic acid, while HDI samples were diluted 1:10 with water/0.1% formic).

3.2.2—LC-MS analyses of human cell lines cultured with HDI ureas also identified the 

260.23 m/z [M+H]+ ion in monocyte-like U937 cells but not in an airway epithelial derived 

cell line (NCI-H292), as shown in comparative BPCs and extracted ion chromatograms 

(Figure 5). A 259 m/z [M+H]+ ion (and its doubly charged species) with the same retention 

time (~1.3 minutes) as the above described dimeric HDI urea (peak 2A) was also increased 

in U937 cells, but not NCI-H292 cells. Of note, NCI-H292 cells incubated with HDI ureas 

contained increased amounts of a 274 m/z [M+H]+ ion (noted with asterisk in Fig. 5) also 

present in control NCI-H292 cells, and found in U937 cells without change upon culture 

with HDI ureas (data not shown).

3.2.2—MS/MS analysis of the HDI urea induced 260.23 m/z [M+H]+ ion from U937 cells 

(Fig. 6) produced CID fragments consistent with a structure of the formula C13H29N3O2, 

containing partially hydrolyzed HDI covalently attached to a 6 carbon molecule via an N- or 

O-linkage, as shown in Figures 7. The 100.11 m/z [M+H]+ ion likely results from loss of 

water (−18 Da) from the 118.12 m/z [M+H]+ CID fragment.

3.2.3—MS/MS analysis (Fig. 8) also identified a 260.23 m/z [M+H]+ ion as a major CID 

fragment of a larger 402.34 m/z [M+H]+ ion that eluted at a later time point (retention time 

~3.4 min). Notably, the mass difference between the 402.34 parent [M+H]+ ion and the 

260.23 daughter [M+H]+ fragment (~142.11 amu) is consistent with that expected for 1 

partially hydrolyzed HDI molecule. The CID fragmentation pattern of the 402.34 m/z [M

+H]+ ion is consistent with the structure proposed in Figure 9, containing the 260.23 m/z [M

+H]+ ion attached to partially hydrolyzed HDI.

4. DISCUSSION

The present study used LC-MS and LC-MS/MS to evaluate the ability of HDI to polymerize 

in physiologic solution. The data demonstrate the capacity for hydrolyzed, or partially 

hydrolyzed HDI, to compete with water and protein for reactivity with unreacted HDI in 

solution. Polymerized HDI reaction products were characterized as soluble HDI ureas and 

oligoureas, essentially dimers and trimers of partially hydrolyzed HDI, possessing either 2 

amine groups (diamines) or cyclized structures. When human PBMCs and monocyte-like 

U937 cells were cultured with low molecular weight oligomers of partially hydrolyzed HDI, 

LC-MS and LC-MS/MS analysis of their intracellular contents identified a novel 260.23 m/z 
[M+H]+ ion, which we hypothesize possesses the formula C13H29N3O2 and a structure 

containing partially hydrolyzed HDI. Thus, LC-MS and LC-MS/MS proved useful for 
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characterizing low molecular weight polymers of aliphatic hexamethylene diisocyanate that 

form in physiologic solution. The technique offers multiple advantages over prior methods 

used to investigate isocyanate reactivity in water, which have sometimes relied upon indirect 

measurements (CO2 release), or require extensive work-up (hydrolysis/derivatization) before 

gas chromatography-MS analysis [9, 10]. LC-MS and MS/MS were also applicable in the 

present study as a discovery science tool and identified a previously undescribed 260 m/z [M

+H]+ ion within human cells exposed to HDI ureas

The precision of LC and MS make them uniquely suited for studying chemical reactions 

relevant to adverse health outcomes (asthma, hypersensitivity pneumonitis) due to 

diisocyanate exposure. Diisocyanate reactivity can be monitored based upon unique mass 

increases resulting from nucleophilic addition of chemical or partially hydrolyzed chemical, 

and changes in LC retention time due to the chemical’s innate hydrophobicity. The present 

data are in good agreement with prior studies suggesting the formation of low molecular 

weight ureas from aliphatic isocyanates in aqueous phase [9, 10, 18]. Our data suggest such 

ureas can form despite the presence of functional groups (primary amines) on proteins, 

sodium, chloride, and phosphate ions present in solution. The present study was performed 

with a model solution of albumin at a concentration roughly equivalent to that predicted to 

exist in airway fluid [21]. In vivo however, proteins other than albumin, and non-protein 

targets (amines, thiols) may also react with HDI, and the ratio of HDI:reactants is uncertain. 

Further LC-MS/MS studies varying the concentration of HDI vs. protein/non-protein targets 

and altering buffer composition (e.g. surfactant, glutathione, bicarbonate) may better define 

the polymerization of HDI (and other diisocyanates) as they occur inside the body.

By utilizing LC-MS in discovery mode, we were able to readily identify a novel 260.23 m/z 
[M+H]+ ion in human cells exposed to soluble HDI polymers formed in physiologic 

solution. Further LC-MS/MS studies suggest the 260.23 m/z [M+H]+ ion is a long chain 

aliphatic amino-alcohol possessing the formula C13H29N3O2; however, the data cannot rule 

out the unlikely possibility that the ion is an ether containing diamine, as shown in Fig. 3 

(see hypothesis below on possible derivation of the molecule). Greater than 500 chemicals 

[25] are known to possess the chemical formula C13H29N3O2; however, we could not 

identify any among these that would yield the LC-MS/MS CID fragmentation patterns we 

observed. Similarly no chemical structures could be found in the MolPort database [27] that 

matched our proposed (N- or O-linked) structure for the 260.23 m/z [M+H]+ ion. Attempts 

to further characterize the 260.23 m/z [M+H]+ ion by nuclear magnetic resonance (NMR) 

were unsuccessful. 1H NMR of the 260.23 m/z [M+H]+ ion was inconclusive as the purified 

molecule was insoluble in chloroform and contained exchangeable hydrogen atoms in sites 

key to structural determination (differentiating N- vs. O-linkage). Limited sample sizes of 

the present investigation precluded 13C-NMR analysis. Further studies, beyond the scope of 

this initial discovery, will be necessary to validate our predicted structure for the newly 

described 260.23 m/z [M+H]+ ion.

As noted in the Results Section (3.2.2), a 260.23 m/z [M+H]+ ion is also a major fragment 

of a larger 402.34 m/z [M+H]+ ion present in cells cultured with HDI ureas. Its CID 

fragmentation pattern and the mass difference between 402.34 – 260.23, equivalent to that of 

partially hydrolyzed HDI, suggest the 402.34 m/z [M+H]+ ion might represent a structure 
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analogous to the 260.23 m/z [M+H]+ molecule, with the addition of another partially 

hydrolyzed HDI.

The source of the newly described 260.23 and 402.34 m/z [M+H]+ ions remains unclear. We 

hypothesize their derivation by metabolism of “dimeric” or “trimeric” HDI ureas of the 

diamine type, by oxidative deamination and reduction, as described for other xenobiotics 

[26–28], rather than reactivity of partially hydrolyzed HDI with a 6-carbon amino alcohol. 

Other long chain aliphatic diamines are well recognized substrates for amine oxidase [29–

31] and influence histamine activity in vitro and in vivo [32].

The strengths and weaknesses of the present study are important to highlight when 

evaluating the potential biological relevance of the present findings. As mentioned above, 

the precision of LC-MS/MS for separating different molecules, calculating their molecular 

mass, and developing structural models based on CID fragmentation patterns is excellent. 

The major weakness of the study is the reductionist approach, evaluating the reactivity of 

HDI in vitro using a model physiologic solution and potentially saturating amounts of 

N=C=O relative to protein reaction targets. Our original analysis was focused on cell uptake 

of HDI-albumin reaction products, given their link to occupational exposure, immune 

responses and asthma and thus, did not include analysis of (a) HDI reaction products in 

buffer without albumin, (b) extracellular medium or activation markers, or (c) measurements 

of hexamethylene diamine. Ongoing studies in our lab have since used LC-MS/MS to 

analyze reaction products of HDI in phosphate-buffered saline (PBS) without protein and 

have found qualitatively similar but quantitatively higher total ion chromatograms, with 

relative increases in higher molecular weight polymers of partially hydrolyzed HDI (see 

Supplemental Materials Figs. S3–S5). Human U937 cells incubated with the <3kDa fraction 

of HDI reaction products in buffer (no protein) similarly contained the novel 260.23 m/z [M

+H]+ ion described herein (see Supplemental Materials Fig S6). Future studies comparing 

the ureas generated from HDI in the presence/absence of varying amounts of protein or other 

reactants (as mentioned above), and their effects on intracellular as well as extracellular 

molecules should provide a better assessment of their biological relevance.

In summary, we utilized LC-MS and MS/MS techniques to characterize polymers of the 

aliphatic diisocyanate, HDI, an occupational asthma-causing chemical, that form in 

physiologic solution. The techniques permitted direct characterization of diisocyanate 

polymerization without reliance upon indirect assessment (e.g. CO2 evolution) or complex 

sample workup (e.g. acid hydrolysis at high temp followed by derivatization and gas 

chromatography) [9, 10]. The data identified dimers and trimers of partially hydrolyzed 

HDI, with distinct properties (LC elution time, m/z, doubly vs. singly charged ionization, 

and MS/MS fragmentation patterns). When these soluble low molecular weight HDI 

polymers were incubated with human cells, LC-MS and LC-MS/MS data readily identified a 

novel 260.23 m/z [M+H]+ ion, and suggest the molecule contains partially hydrolyzed HDI 

and possesses the formula C13H29N3O2. Further studies will be necessary to confirm the 

newly described 260.23 m/z [M+H]+ ion’s structure and its relevance to human occupational 

HDI exposure.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
LC-MS analysis of the low molecular weight (<3kDa) products formed when HDI reacts in 

physiologic solution. LC-MS BPCs of the <3kDa fraction of HDI reaction products (red 

dashed line) vs. control reaction products (black solid line). Y-axis depicts relative ion 

intensity and X-axis depicts elution time. The dominate [M+H]+ ions comprising the major 

peaks eluting at specific retention times (RT) in minutes are listed in Table 1. *indicates 

saturating levels for given ions. Likely phosphate adducts (+98 kDa/H3PO4) and doubly 

charged (z=2) species are observed for some ions. See Figure 2 for MS and MS/MS data.
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Figure 2. 
LC-MS and LC-MS/MS analysis of major low molecular weight (<3kDa) products formed 

when HDI reacts in physiologic solution. For each of the major peaks labeled in Figure 1, 

MS and MS/MS analyses are shown for the precursor/parent [M+H]+ ions (top panels) and 

the fragments produced upon CID (bottom panels). The data are consistent with the 

predicted structures shown for partially hydrolyzed HDI (peak 1), dimers of partially 

hydrolyzed HDI (peaks 2A and 2B) and trimers of partially hydrolyzed HDI (peaks 3A and 

3B). Note dominance of doubly charged species for the 259.25 and 401.36 m/z [M+H]+ 

ions, (peaks 2A and 3A) which are predicted diamines, and the limited change in the 143.12, 

285.23 and 427.34 m/z [M+H]+ ions’ (peaks 2B and 3B) intensity following CID, consistent 

with a cyclized structure. The charge state (z) is noted in the MS plots under the m/z value
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Figure 3. 
Proposed structures for reaction products of HDI in physiologic solution. Models are 

provided for the new [M+H]+ ions formed when HDI is introduced into a physiologic 

solution, based on LC-MS and LC-MS/MS analyses shown in Figs. 1 and 2.
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Figure 4. 
A 260.23 m/z [M+H]+ ion present in PBMCs upon culture with reaction products of HDI in 

physiologic solution. Human PBMCs from 3 different subjects were cultured for 48 hrs in 

the presence of HDI ureas, or control reaction products. Panels A, B, and C show subtraction 

plots of the LC-MS BPC for extracts from HDI urea exposed cultures – control cultures for 

each subject. Panels D, E and F show MS data for exposed samples eluting ~2.4 minutes 

(peak circled in red dashed line with blue asterisk), the time of maximal difference between 

exposed and control cultures, and highlight a dominant 260.23 m/z [M+H]+ ion. Panels G, H 

and I show MS data for exposed samples eluting ~1.3 minutes (peak with green asterisk) and 

highlight a dominant 259.25 m/z [M+H]+ ion.
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Figure 5. 
Novel 260.23 m/z [M+H]+ ion observed in human monocytic (U937) cell line cultured with 

HDI reaction products (ureas). LC-MS BPC of the <3kDa fraction of U937 cells (A) or 

NCI-H292 cells (B) incubated for 48 hrs with HDI (blue or green dashed lines) or control 

reaction products (black solid lines). Prominent distinct peaks (highlighted with arrows) in 

U937 cells cultured with HDI reaction products contain [M+H]+ ions with same 260.23 m/z 
observed in experiments with PBMCs shown in Fig. 4, and the 259.25 m/z [M+H]+ ion that 

comprises peak 2A in Fig 1. Panel C shows extracted ion chromatograms for the 260.23 m/z 
[M+H]+, and 259.25 m/z [M+H]+ (and its corresponding doubly charged ion) from exposed 

U937 cells (green line) and NCI-H292 cells (blue base line) as labeled. Y-axis depicts 

relative ion intensity and X-axis depicts retention time in minutes.
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Figure 6. 
MS and MS/MS of the 260.23 m/z [M+H]+ ion observed in U937 cells incubated with HDI 

ureas. Top pane shows MS at time of maximal elution (~2.4 min) of the 260.23 m/z [M+H]+ 

ion based on extracted ion chromatogram. Bottom pane shows [M+H]+ ion fragments of the 

260.23 m/z [M+H]+ ion produced upon CID during MS/MS
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Figure 7. 
Proposed structures for the 260.23 m/z [M+H]+ ion from human cells incubated with HDI 

ureas. The expected mass and fragmentation pattern observed following CID (see Fig. 6) are 

consistent with a structure possessing the formula C13H29N3O2 and containing partially 

hydrolyzed HDI.
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Figure 8. 
MS and MS/MS of the 402.34 m/z [M+H]+ ion observed in U937 cells incubated with HDI 

ureas. Top shows MS from the time point (~3.4 minutes) of maximal elution for the 402.34 

m/z [M+H]+ ion. Bottom MS/MS data shows [M+H]+ ion fragments of the 402.34 m/z [M

+H]+ ion produced upon CID.
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Figure 9. 
Proposed structure(s) for the 402.34 m/z [M+H]+ ion from human cells incubated with HDI 

ureas. The expected mass and fragmentation pattern observed following CID (see Fig. 8) are 

consistent with a structure (in red with *) possessing the formula C20H43N5O3 and 

containing partially hydrolyzed HDI.
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Table 1

HDI hydrolysis products and polymers

* RT Peak # Major Ions & charge (z)

2.5 1 143.12 [z=1]

0.9 1P
*143.12 [z=1]

*241.10 [z=1] H3PO4 adduct?

1.3 2A
*130.13 [z=2]
259.25 [z=1]

3.4 2B *285.23 [z=1]

2.1 2BP

*383.21 [z=1] H3PO4 adduct?
285.23 [z=1]
143.11 [z=2]

2.3 3A 201.18 [z=2]
401.36 [z=1]

4.1 3B
*427.34 [z=1]
214.17 [z=2]

*
RT = Retention time in minutes
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